How-To: Build a Web Application with Ajax Part 5

Displaying Results to Browser

Once we've updated the resultsin pol1Array, we can display them
usingtheprintResult method. Thisis actually the cool part: the
user will experience first-hand the difference between our AJAX
application and an older-style app that requires an entire page refresh
to update content.

Rendering Page Partials

In AJAX jargon, the chunk of the page that holds thelist of response
timesis called a page partial. This refers to an area of a web page
that's updated separately from the rest of the page.

Updating a chunk of a web page in response to an asynchronous
request to the server is called “rendering a page partial.”

The printResult methoditerates through pollArray, and uses
DOM methods to draw the list of poll resultsinsidea div with the
ID pollResults. We'll start by adding that div to our markup:

Example 3.22. appmonitor2.html (excerpt)

<body>
<div id="statusMessage">App Status:

</div>

<div id="pollResults"></div>

<div i1d="buttonArea"></div>

</body>
Now we're ready forthe printResult method:

Example 3.23. appmonitor2.js (excerpt)

this.printResult = function() {
var self = Monitor;
var polls = self.pollArray;

var pollDiv =
document.getElementById('pollResults')

var entryDiv = null;
var messageDiv = null;
var barDiv = null;

var clearAll = null;
var msgStr = '';

var txtNode = null;

while (pollDiv.firstChild) {

pollDiv.removeChild (pollDiv.firstChild);

}

for (var 1 = 0; 1 < polls.length; i++) {

if (polls[i] == 0) {

msgStr = ' (Timeout) ';

else {
msgStr = polls[i] + ' sec.';
}
entryDiv = document.createElement ('div"');
messageDiv = document.createElement ('div');

barDiv = document.createElement ('div');

clearAll = document.createElement ('br');

entryDiv.className = 'pollResult';

messageDiv.className = 'time';

barDiv.className = 'bar';

clearAll.className = 'clearAll';

1f (polls[i] == 0) {
messageDiv.style.color = '#933';

}

else {

messageDiv.style.color = "#339';

}

barDiv.style.width = (parselInt(polls[i] * 20))
+ 'px';

messageDiv.appendChild (document.createTextNode (
msgStr)) ;

barDiv.appendChild (document.createTextNode ('u00
AQ"));

entryDiv.appendChild (messageDiv) ;
entryDiv.appendChild (barDiv) ;
entryDiv.appendChild(clearAll);

pollDiv.appendChild(entryDiv) ;

I
There’s quite a bit here, so let's look at this method step by step.

Example 3.24. appmonitor2.js (excerpt)

while (pollDiv.firstChild) {
pollDiv.removeChild (pollDiv.firstChild) ;

}

After initializing some variables, this method removes everything
from pollDiv: the while loop uses removeChild repeatedly to
delete all the child nodes from pol1Div.

Next comes a simple forloop that jumps throughthe updated array of
results and displays them.

We generate a message for the result of each item in this array. As
you can see below, timeouts (which are recorded as a 0) generate a
message of (Timeout).

Example 3.25. appmonitor2.js (excerpt)

if (polls[i] == 0) {
msgStr = '(Timeout) ';

}

else {

msgStr = polls[i] + ' sec.';

}

Next, we use DOM methods to add the markup for each entry in the
list dynamically. In effect, we constructthe following HTML in
JavaScript for each entry in the list:

<div class="pollResult">

<div class="time" style="color: #339;">8.031
sec.</div>

<div class="bar" style="width:
160px;"> </div>

<br class="clearAll"/>

</div>

The width of the bar div changestoreflect the actual responsetime,
and timeouts are shown in red, but otherwise all entries in this listare
identical. Note that you have to put somethinginthe div to causeits
background colorto display. Even if you give the div a fixed width, the
background colorwill not show if the div is empty. Thisis annoying,
but it's easy to fix: we can fillinthe div with a non-breaking space
character.

Let's take a look at the code we'll use to insert this markup:

Example 3.26. appmonitor2.js (excerpt)

entryDiv = document.createElement ('div');
messageDiv = document.createElement ('div');

barDiv = document.createElement ('div');

clearAll = document.createElement ('br');
entryDiv.className = 'pollResult';
messageDiv.className = 'time';
barDiv.className = 'bar';
clearAll.className = 'clearAll';

if (pollsf[i] == 0) {

messageDiv.style.color = "#933"';

else {

messageDiv.style.color = "#339';
}
barDiv.style.width = (parselnt(polls[i] * 20)) +
'pX';

messageDiv.appendChild (document.createTextNode (msgS
tr));

barDiv.appendChild (document.createTextNode ('uO0AQ0")
) 7

entryDiv. appendChild (messageDiv) ;
entryDiv.appendChild (barDiv) ;
entryDiv.appendChild(clearAll);

pollDiv.appendChild(entryDiv) ;

This code may seem complicated if you've never used DOM
manipulationfunctions, butit's really quite simple. We use the well-
named createElement methodto create elements;then we assign
values to the properties of each of those element objects.

Just after the i £ statement, we can see the code that sets the pixel
width of the bar div accordingto the number of seconds taken to
generate each response. We multiply thattime figure by 20to get a
reasonable width, but you may want to use a higherorlower number
dependingon how much horizontal space is available on the page.

To add text to elements, we use createTextNode in conjunction
with appendChild, whichis alsousedto place elementsinside other
elements.

createTextNode and Non-breaking Spaces

In the code above, we create a non-breaking space using u0O0AO0. If we
try to use the normal entity here, createTextNode will
attempt to be “helpful” by converting the ampersand to samp;; the
result of thisis that snbsp; is displayed onyour page. The
workaround is to use the escaped unicode non-breaking

space: u00A0.

3 ipp Monitor - Mozilla Firefox
File Edk ‘Wew Go Bookmarks Took Help

<:=|.I = | Lx . ;@ Bpl | LI hetpidilocsthest sppmanitor2, il | D s IC,

App Status: Eunning
6015 sec.

4015 zec.
10,016 sec.
(Tirmneont)
(Timeout)
9015 sec
9016 zec
(Timeout)

28016 zec.

Figure 3.6. The application starting to take shape

The last piece of the code puts all the div elements together, then
places the pollResultdivinsidethe pollResults div. Figure 3.6 shows
the running application.

“Hold on a second,” you may well be thinking. “Where's the bar graph
we're supposedto be seeing?”

The first bar is there, butit's displayed in white on white, whichis
pretty useless. Let's make it visible through ourapplication’s CSS:

Example 3.27. appmonitor2.css (excerpt)

.time {
width: 6em;
float: left;

}

.bar {
background: #ddf;
float: left;

}

.clearBoth {

clear: both;

}
The main point of interestinthe CSS isthe float:
left declarations forthe time and bar div elements, which make

up the timelisting and the colored bar in the bar graph. Floating them
to the leftis what makes them appear side by side. However, for this
positioning technique to work, an elementwith the clearBoth class
must appear immediately afterthese two divs.

Thisis where you can see AJAX in action. It uses bits and pieces of all
these differenttechnologies — XMLHt tpRequest, the W3C DOM, and
CSS — wired togetherand controlled with JavaScript. Programmers
often experience the biggest problems with CSS and with the
practicalities of building interface elements in their code.

As an AJAX programmer, you can either try to depend on a library to
take care of the CSS for you, or you can learn enough to get the job
done. It's handy to know someone smart who's happy to answer lots
of questions on the topic, or to have a good book on CSS (forexample,
SitePoint’s The CSS Anthology: 101 Essential Tips, Tricks & Hacks).

3 app Monitor - Mozilla Firefox

Fie Edk Wew Go Bookmarks Took Help
1 F —
@ -up- [@ o) | L] Wepuiflocshost fsppmonitor2, sl » @ e [CL

App Status: Eunning
G015 zec.
5016 sec,
(Timeout)
T016 zec.
5032 sec.
(Timeout)
3015 zec.
7.016 sec
4016 zee.
10 sec

Dane

Figure 3.7. The beginnings of our bar graph

Now that our CSS is in place, we can see the bar graph in our
application display, as Figure 3.7 illustrates.

Stopping the Application

The final action of the pollServerStart method, after gettingthe
app running,isto call toggleAppStatus totogglethe appearance of
the application. toggleAppStatus changesthe status displayto
App Status: Running, switches the Start button to a Stop button, and
attaches the pollServerStop methodto the

button’s onclick event.

ThepollServerStop method stopsthe ongoing polling process,
then toggles the application back so that it looks like it's properly
stopped:

Example 3.28. appmonitor2.js (excerpt)

this.pollServerStop = function() {
var self = Monitor;
1if (self.stopPoll()) {

self.toggleAppStatus (true);

}

self.regStatus.stopProc (false);

I

This code reuses the stopPoll method we added earlier in the
chapter. At the moment, all that method does is abort the current
HTTP request, whichis fine while we're handling atimeout. However,
this method needs to handle two other scenarios as well.

The first of these scenarios occurs when the method is called during
the pollinterval (that is, after we receive a responseto an HTTP

request, but before the next request is sent). In this scenario, we need
to cancel the delayed call to doPol1.

The second scenario that this method must be able to handle arises
when stopPoll is called after it has sent a request, but beforeiit
receives the response. In this scenario, the timeout handlerneeds to
be canceled.

As we keep track of the interval IDs of both calls, we can
modify stopPoll to handlethese scenarios with two calls

to clearTimeout:

Example 3.29. appmonitor2.js (excerpt)

this.stopPoll = function() {
var self = Monitor;
clearTimeout (self.pollHand) ;
if (self.ajax) {
self.ajax.abort() ;
}
clearTimeout (self.timeoutHand) ;

return true;

I
Now, you should be able to stop and start the polling process just by
clicking the Start/Stop button beneath the bar graph.

Status Notifications

The ability of AJAX to update contentasynchronously, and the fact
that updates may affect only small areas of the page, make the
display of status notifications acritical part of an AJAX app’s design
and development. Afterall, your app’s users need to know what the
app is doing.

Back in the old days of web development, when an entire page had to
reload in order to reflect any changesto its content, it was perfectly
clear to end users when the application was communicating with the
server. But our AJAX web apps can talk to the server in the
background, which means that users don’t see the complete page
reload that would otherwise indicate that something was happening.

So, how will users of your AJAX app know that the page is
communicatingwith the server? Well, instead of the old spinning
globe or waving flag animations that display in the browser chrome,
AJAX applications typically notify users that processing is under way
with the aid of small animations orvisual transitions. Usually achieved
with CSS, these transitions catch users’ eyes — without being
distracting! — and provide hints about what the applicationis doing.
An important aspect of the good AJAX app designis the development
of these kinds of notifications.

The Status Animation

Since we already have at the top of our application asmall bar that
tells the userifthe app is running or stopped, thisis a fairly logical
place to display a little more status information.

Animations like twirling balls or running dogs are a nice way to
indicate that an application is busy — generally, you'll want to display
an image that uses movementto indicate activity. However, we don't
want to use a cue that’s going to draw users’ attention away from the
list, or drive peopleto distraction as they're trying to read the results,
so we'll just go with the slow, pulsinganimation shownin Figure 3.8.

This animation has the added advantages of being lightweight and
easy to implementin CSS — no Flash player is required, and there’s no
bulky GIF image to download frame by tedious frame.

The far right-hand side of the white bar is unused space, which makes
it an ideal place for this kind of notification: it’s at the top of the user
interface, so it's easy to see, butit’'s off to the right, so it's out of the
way of people who are trying to read the list of results.

)
O o e
{;‘:} Processing... |: | Processing... ‘:l[Processing...

|/

I.'\.)
Processing... E> Processing... | [| Processing...

x\ - Q J
Processing... C} Processing...)| Processing... Qg -

Done Ex} Done |:,| Done
Figure 3.8. Our pulsing status animation

To hostthisanimation, we'll add a div with the
ID pollingMessage justbelowthe status messagedivinour
document:

Example 3.30. appmonitor2.html (excerpt)

<body>
<div id="statusMessage">App Status:

</div>

<div id="pollingMessage"></div>

<div id="pollResults"></div>
<div id="buttonArea"></div>

</body>
Add a CSS rule to your style sheet to position this div:

Example 3.31. appmonitor2.css (excerpt)

#pollingMessage {
float: right;
width: 80px;
padding: 0.2em;
text-align: center;

}
This animationis now positioned to the right of the page.

When you open the page in your browser, you won'tbe able to see the
animation —it's nothing but a white box on a white background at the
moment. If you'd like to, add some contentto pollingMessage to
see where it's positioned.

setInterval and Loss of Scope

The JavaScript setInterval is an obvious and easy way to handle a task
that occurs repeatedly — forinstance, to control a pulsinganimation.

All the CSS gyrations with setInterval resultin some fairly
interesting and bulky code. So, as | mentioned before, it makes sense
to put the code for the status animation into its own class

— Status — that we can reference and use from the Monitor class.

Some of the clever developers reading this may already have guessed
that setInterval suffersfromthe same loss-of-scopeproblems

as setTimeout: the object keyword this becomeslost. Since we
have to deal with only one status animation in our monitoring
application, it makes senseto take the expedient approach, and make
our Status class a singletonclass, justas we did for

the Monitor class.

Seftting Up Status

Let's start by adding some properties to the Status stub we've already
written, in order to get the previous code working:

Example 3.32. appmonitor2.js (excerpt)

var Status = new function () {

this.currOpacity = 100;

this.proc = 'done'; // 'proc', 'done' or
'abort'
this.proclInterval = null;

this.div = null;
this.init = function() {

// don't mind me, I'm just a stub
}i

this.startProc = function() {

I £

// another stub function

this.stopProc = function() {

J; £

}

// another stub function

The Status object has four properties:

The currOpacity property tracks the opacity of

the pollingMessage div. Weuse setInterval to change
the opacity of this div rapidly, which produces the pulsingand
fading effect.

The proc property is a three-state switch that indicates whether
an HTTP request is currently in progress, has been completed
successfully,or was aborted before completion.

The procInterval property is for storingtheinterval ID for
the setInterval process that controlsthe animation. We'lluse
it to stop the runninganimation.

The div property is a reference to the pollingMessage div.
The status class manipulatesthepollingMessage div's
CSS properties to create the animation.

Initialization

An init methodis neededto bindthe div property
0 pollingMessage:

Example 3.33. appmonitor2.js (excerpt)

this.init = function () {
var self = Status;

self.div =
document.getElementById('pollingMessage') ;

self.setAlpha() ;

¥

The init method also contains a callto a method named setAlpha,
whichis required for an IE workaround that we’ll be looking at a bit
later.

Internet Explorer Memory Leaks

DOM element references (variables that pointto div, td,

or span elements and the like) that are used as class properties are a
notorious cause of memory leaks in Internet Explorer. If you destroy
an instance of a class without clearing such properties (by setting
themto nul1l), memory will not be reclaimed.

Let's add to our Monitor class a cleanup method that handles
the window.onunload event, like so:

Example 3.34. appmonitor2.js (excerpt)

window.onunload = Monitor.cleanup;

This method cleans up the Status class by calling that
class’s cleanup method and setting the regStatus property
fonull:

Example 3.35. appmonitor2.js (excerpt)

this.cleanup = function() {
var self = Monitor;
self.regStatus.cleanup();

self.regStatus = null;

Y
The cleanup methodinthe status class doesthe IE housekeeping:

Example 3.36. appmonitor2.js (excerpt)

this.cleanup = function() {

Status.div = null;

I

If we don'tset that div reference to null, Internet Explorer will keep
the memory it allocated to that variable in a death grip, and you'll see
memory use balloon each time you reload the page.

In reality, this wouldn’t be much of a problem for our tiny application,
but it can become a seriousissuein large web appsthat have a lot of
DHTML. It's good to getinto the habit of cleaningup DOM references
in your code so that this doesn'tbecome an issue for you.

ThedisplayOpacity Method

The central piece of code in the Status classlivesin

the displayOpacity method. This containsthe browser-specific
code that's necessaryto change the appropriate CSS properties of
the pollingMessage div. Here'sthe code:

Example 3.37. appmonitor2.js (excerpt)

this.displayOpacity = function() {
var self = Status;
var decOpac = self.currOpacity / 100;

if (document.all && typeof window.opera ==
'undefined') {

self.div.filters.alpha.opacity =
self.currOpacity;

}

else {

self.div.style.MozOpacity = decOpac;

}

self.div.style.opacity = decOpac;

}i

The currOpacity property of the objectrepresents the opacity to
whichthe pollingMessage div shouldbe set. Ourimplementation
uses an integer scale ranging from 0 to 100, which is employed by
Internet Explorer, rather than the fractional scale from zero to one
that’'s expected by Mozillaand Safari. This choiceis justa personal
preference;if you prefer to use fractional values, by all means do.

In the method, you'll see a test for document.all — a property that's
supported only by IE and Opera — and a test for window. opera,
which, unsurprisingly,is supported only by Opera. As such, only IE

should execute the if clause of this if statement. Inside this IE branch
of the i £ statement, the proprietary alpha.opacity propertyisused
to set opacity, whilein the else clause, we use the

older MozOpacity property, which is supported by older Mozilla-
based browsers.

Finally, this method sets the opacity in the standards-compliant way:
using the opacity property, which should ultimately be supportedin
all standards-compliant browsers.

IE Gotchas

Internet Explorer version 6, being an older browser, suffers a couple of
issues when trying to render opacity-based CSS changes.

Fortunately, the first of these is easily solved by an addition to
ourpollingMessage CSSrule:

Example 3.38. appmonitor2.css (excerpt)

#pollingMessage {
float: right;
width: 80px;
padding: 0.Z2em;
text-align: center;

background: #fff;

}
The addition of the background property fixes the first specific
problem with Internet Explorer. We must set the background color of

an elementif we want to change its opacity in IE, or the text will
display with jagged edges. Note that setting backgroundto
transparent will not work: it must be set to a specific color.

The second problemiis a little trickier if you want your CSS files to be
valid. [IE won't let you changethe style.alpha.opacity unlessit's
declared inthe style sheet first. Now, if you don’t mind preventing your
style sheets from being passed by the W3C validator, it's easy to fix
this problem by adding another declaration:

Example 3.39. appmonitor2.css (excerpt)

#pollingMessage {
float: right;
width: 80px;
padding: 0.Z2em;
text-align: center;
background: #fff;
filter: alpha (opacity = 100);

}
Unfortunately, this approach generates CSS warnings in browsers that

don’t supportthat proprietary property, such as Firefox 1.5, which
displays CSS warnings in the JavaScript console by default. A solution
that’s better than inserting IE-specific styleinformationinto your
global style sheetis to use JavaScript to add that declaration to

the pollingMessage div's style attributein IE only. That's what
the setAlpha methodthat'scalled in init achieves. Here's the code
forthat method:

Example 3.40. appmonitor2.js (excerpt)

this.setAlpha = function() {
var self = Status;
if (document.all && typeof window.opera ==
'undefined') {
var styleSheets = document.styleSheets;

for (var 1 = 0; 1 < styleSheets.length; i++)

var rules = styleSheets[i].rules;
for (var 7 = 0; j < rules.length; j++) {
if (rules[j].selectorText ==
'"#pollingMessage') {
rules[j].style.filter =
'alpha (opacity = 100)';

return true;

}

return false;

I

This code, which executes onlyin Internet Explorer, uses

the document.styleSheets array to iterate through each style
sheet that’s linked to the current page. It accesses the rules in each of
those style sheets usingthe rules property, and finds the style we
want by looking at the selectorText property. Onceit has the right
styleinthe rules array, it givesthe filter property the value it
needsto changethe opacity.

Opacity in Opera?

Unfortunately, at the time of writing, even the latest version of Opera
(version 8.5) doesn’t support CSS opacity, so such an animation does
not work in that browser. However, this feature is planned for Opera
version 9.

Running the Animation

The code for the processing animation consists of five methods: the
first three control the “Processing..." animation, while the remaining
two control the “Done” animation. The three methods that control the
“Processing...” animation are:

« startProc, which sets up the “Processing ..." animation and
schedules repeated callsto doProc with setInterval

. doProc, which monitors the properties of this class and sets the
current frame of the “Processing..." animation appropriately

« stopProc, which signals that the “Processing ...” animation
should cease

The two that control the “Done” animation are:

. startDone sets up the “Done” animationand schedules
repeated calls to doDone with setInterval

. doDone sets the current frame of the “Done” animation and
terminates the animation onceit's completed

Starting it Up

Setting the animation up and starting it are jobs for
the startProc method:

Example 3.41. appmonitor2.js (excerpt)

this.startProc = function () {
var self = Status;
self.proc = 'proc';

1if (self.setDisplay(false)) {
self.currOpacity = 100;
self.displayOpacity() ;

self.procInterval = setlInterval (self.doProc,
90) ;

}

Y

After settingthe proc property to proc (processing),this code calls
the setDisplay method, which sets the colorand content of

the pollingMessage div. We'll take a closer look

at setDisplay next.

Once the code sets the colorand content of

the pollingMessage div, itinitializesthe div's opacityto 100
(completely opaque) and calls displayOpacity to make this setting
take effect.

Finally, this method calls setInterval to schedulethe next step of
the animation process. Note that, as with setTimeout,

the setInterval call returns an interval ID. We store thisin

the procInterval property so we can stopthe process later.

Both the “Processing ..." and “Done” animations share
the setDisplay method:

Example 3.42. appmonitor2.js (excerpt)

this.setDisplay = function (done) {
var self = Status;
var msg = '';

if (done) {

msg = 'Done';
self.div.className = 'done';
}
else {
msg = 'Processing...';

self.div.className = 'processing';

}

if (self.div.firstChild) {
self.div.removeChild(self.div.firstChild) ;

}

self.div.appendChild (document.createTextNode (msqg)
) 7

return true;

}i

Since the only differences between the “Processing ...” and “Done”
states of the pollingMessage div are its color and text, it makes
senseto usethis common function to toggle between the two states
of the pollingMessage div. The colors are controlled by assigning
classesto the pollingMessage div, so we'll needto add CSS class
rules for the done and processing classes to our style sheet:

Example 3.43. appmonitor2.css (excerpt)

.processing {

color: #339;

border: 1lpx solid #339;
}
.done {

color:#393;

border:1lpx solid #393;

}
Making it Stop

Stopping the animation smoothly requires some specific timing. We
don’twant the animation to stop abruptly right in the middle of a
pulse. We want to stop it in the natural break, when the “Processing..."
image’s opacity is down to zero.

So the stopProc method for stopping the animation doesn’t actually
stop it per se — it just sets a flag to tell the animation process that it’s
time to stop when it reaches a convenient point. Thisis a lot like the
phone calls received by many programmers at the end of the day from
wives and husbandsreminding them to come home when they get to
a logical stopping pointin their code.

Since very little action occurs here, the method is pretty short:

Example 3.44. appmonitor2.js (excerpt)

this.stopProc = function(done) {
var self = Status;
if (done) {
self.proc = 'done';
}
else {

self.proc = 'abort';

Y

This method does have to distinguish between two types of stopping:
a successfully completed request (done) and a request from the user
to stop the application (abort).

The doProc method uses this flag to figure out whether to display the
“Done” message, or justto stop.

Running the Animation with doProc

The doProc method, which isinvoked at 90 millisecondintervals,
changesthe opacity of the pol1lingMessage div to producethe
pulsing effect of the processing animation. Here's the code:

Example 3.45. appmonitor2.js (excerpt)

this.doProc = function() {
var self = Status;
if (self.currOpacity == 0) {
1f (self.proc == 'proc') {

self.currOpacity = 100;
}
else {
clearInterval (self.proclInterval);

if (self.proc == 'done') {

self.startDone () ;

}

return false;

}

self.currOpacity = self.currOpacity - 10;
self.displayOpacity ()

Y

This method is dead simple — its main purposeis simply to reduce
the opacity of the pollingMessage div by 10% every timeit's
called.

The firstif statementlooks to see if the div has completely faded
out. If it has, and the animation is still supposed to be running, it
resets the opacity to 100 (fully opaque). Executing this code every 90
milliseconds produces a smooth effect in which

the pollingMessage div fadesout, reappears, and fades out again
— the familiar pulsing effect that shows that the applicationis busy
doing something.

If the animation is not supposed to continue running, we stop the
animation by calling clearInterval, then,if the proc property is
done, we trigger the “Done” animationwith a call to startDone.

Starting the “Done” Animation with startDone

The startDone method serves the same purpose forthe “Done”
animation thatthe startProc method serves for the “Processing..."
animation. It looks remarkably similarto startProc, t00:

Example 3.46. appmonitor2.js (excerpt)

this.startDone = function () {
var self = Status;
if (self.setDisplay (true)) {
self.currOpacity = 100;
self.displayOpacity() ;

self.procInterval = setInterval (self.doDone,
90) ;

}

Y
Thistime, we pass true to setDisplay, which will changethe text
to “Done” and the colorto green.

We then set up callsto doDone with setInterval, which actually
performs the fadeout.

The Final Fade

The code for doDone is significantly simplerthan the code

for doProc. It doesn’'thave to process continuouslyuntil told to stop,
like doProc does. It justkeeps on reducing the opacity of

the pollingMessage div by 10% until it reaches zero, then stops
itself. Pretty simple stuff:

Example 3.47. appmonitor2.js (excerpt)

this.doDone = function () {
var self = Status;
if (self.currOpacity == 0) {

clearInterval (self.proclInterval);

self.currOpacity = self.currOpacity - 10;

self.displayOpacity ()

3 ipp Monitor - Mozilla Firefox
File Edk ‘Wew Go Bookmarks Took Help

@ - L_, - E E_?l-\[L] hetpfflacahost sppmanitor2. el "": D ao Ev

App Status: Eunning
{ Limeout)
7016 zec.

016 sec

5016 zec.

2015 zec,

28016 sec

3016 zec.

7.015 sec

(Timeout)

(Timeout)

Dane

Figure 3.9. The application with a pulsing status indicator

Finally, we're ready to test this code in our browser.
Open appmonitor2.html inyourbrowser, click the Start button, and

you should see a pulsing Processing... message near the top right-
hand corner of the browser’s viewport, like the one shown in Figure
3.9.

Be Careful with that Poll Interval!

Now that we have an animation runningin the page, we needto be
careful that we don't start the animation again before the previous one
stops. For this reason, it's highly recommended that you don't

set POLL INTERVAL to anythinglessthantwo seconds.

Styling the Monitor

Now that we've got our applicationup and running, let's use CSS to
make it look good. We'll need to add the following markup to achieve
our desired layout:

Example 3.48. appmonitor2.html (excerpt)

<body>
<div id="wrapper">
<div 1d="main">
<div id="status">
<div id="statusMessage">App Status:

</div>
<div id="pollingMessage"></div>

<br class="clearBoth" />

</div>

<div id="pollResults"></div>

<div id="buttonArea"></div>

</div>
</div>

</body>

As you can see, we've added three divs from which we can hang our
styles, and a line break to clear the floated application status message
and animation. The completed CSS for this page is as follows; the

styled interface is shownin Figure 3.10:

Example 3.49. appmonitor2.css

body, p, div, td, ul {

font-family: verdana,
serif;

font-size:12px;
}
#fwrapper {
padding-top: 24px;

#fmain

arial,

helvetica, sans-

width: 360px;
height: 280px;
padding: 24px;
text-align: left;
background: #eee;
border: 1lpx solid #ddd;
margin:auto;

}

#status {
width: 358px;
height: 24px;
padding: 2px;
background: #fff;
margin-bottom: 20px;
border: 1lpx solid #ddd;

}

#statusMessage {
font-size: 1llpx;

float: left;

}

height: 16px;
padding: 4px;
text-align: left;

color: #999;

#pollingMessage {

}

font-size: 1lpx;
float: right;
width: 80px;
height: 1l4px;
padding: 4px;
text-align: center;

background: #fff;

#pollResults {

}

width: 360px;

height: 210px;

#buttonArea |

text-align: center;
}
.pollResult {
padding-bottom: 4px;
}
.time {
font-size: 1lpx;
width: 74px;
float: left;

}

.processing {
color: #339;
border: 1lpx solid #333399;

}

.done {
color: #393;

border: 1lpx solid #393;

.bar {

background: #ddf;

float: left;

.ilnputButton {
width: 8em;

height: 2em;

.clearBoth {

clear: both;

3 App Monitor - Mozilla Firefox
Fie Edk ‘Wew Go Bookmarks Took Help

i sec,

3016 sec.
3.016 sec.
7016 sec.
7.015 sec.
3.015 zee.
3.016 sec.
(Timeout)
6.016 sec.

(Timeout)

L I:r" N E X | @ L1 hetp:iflocahost fappmanitar 2, beml

V:@Gn =

Processing...

Dane

Figure 3.10. The completed App Monitor

Summary

Our first working application showed how AJAX can be used to make
multiple requests to a server withoutthe user ever leaving the
currently loaded page. It also gave a fairly realistic picture of the kind
of complexity we have to deal with when performing multiple tasks
asynchronously. Agood example of this complexity was our use

of setTimeout to timethe XMLHttpRequestrequests. This example
provided a good opportunity to explore some of the common
problems you’ll encounter as you develop AJAX apps, such as loss of
scope and connection timeouts, and provided practical solutions to
help you deal with them.

Courtesy: https://www.sitepoint.com/build-your-own-ajax-web-apps/

Modified: 2021.10.04.7.10.AM

Dokoll Solutions,. Inc.

https://www.sitepoint.com/build-your-own-ajax-web-apps/

